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Abstract 
In this paper we consider a possibility to increase density of field-effect heterotransistors in the 

framework of a fully differential double tail dynamic comparator due to decreasing of their dimensions. 

The considered approach based on doping of required areas of heterostructure with specific 

configuration by diffusion or ion implantation. The doping finished by optimized annealing of dopant 

and/or radiation defects. Analysis of redistribution of dopant with account redistribution of radiation 

defects (After implantation of ions of dopant) for optimization of the above annealing have been done 

by using recently introduced analytical approach. The approach gives a possibility to analyze mass and 

heat transports in a heterostructure without crosslinking of solutions on interfaces between layers of the 

heterostructure with account nonlinearity of these transports and variation in time of their parameters. 

 

Keywords: Fully differential double tail dynamic comparator, optimization of manufacturing, analytical approach 

for prognosis 

 

Introduction 
In the present time an actual question is decreasing of dimensions of solid state electronic 

devices. To decrease the dimensions are could be increased density of elements of integrated 

circuits and decreased dimensions of these elements. To date, several methods to decrease 

dimensions of elements of integrated circuits have been developed. One of them is growth of 

thin films structures [1-5]. The second approach is diffusion or ion doping of required areas of 

samples or heterostructures and father laser or microwave annealing of dopant and/or 

radiation defects [6-8]. Using of the above approaches of annealing leads to generation of in 

homogenous distribution of temperature and consequently to decreasing of dimensions of 

elements of integrated circuits. Another approach to change properties of doped materials is 

radiation processing [9, 10]. 

In this paper we consider an approach to increase density of elements of circuit of a fully 

differential double tail dynamic comparator based on field-effect heterotransistors [11]. To 

illustrate the approach we consider a heterostructure, which consist of a substrate and an 

epitaxial layer. The epitaxial layer includes into itself several sections manufactured by using 

another materials. These sections have been doped by diffusion or ion implantation to 

generation required types of conductivity (p or n) to manufacture bipolar transistors so as it 

is shown on Fig. 1. After finishing of the doping we consider annealing of dopant and/or 

radiation defects (after implantation of ions of dopant). Main aim of the present paper is 

optimization of annealing of the dopant. 

 

Method of analysis 

To solve our aims let us determine spatio-temporal distributions of concentrations of 

dopants. The required distributions we determined by solving the second Fick's law [9, 10, 12, 

13]. 
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Fig 1: Structure of the considered comparator [11]. View from top 

 

  

 

 (1) 

 

With boundary and initial conditions 

 

, , , , 

 

, , C (x,y,z,0)=f (x, y, z). (2) 

 

Here C(x, y, z, t) is the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the 

dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials, speed of heating and 

cooling of heterostructure (with account Arrhenius law). Dependences of dopant diffusion coefficient on parameters could be 

approximated by the following relation [10, 12]. 
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,  (3) 

 

where DL (x, y, z, T) is the spatial (due to inhomogeneity of heterostructure) and temperature (due to Arrhenius law) 

dependences of diffusion coefficient; P (x,y,z,T) is the limit of solubility of dopant; parameter  depends on properties of 

materials and could be integer in the following interval; V (x, y, z, t) is the spatio-temporal distribution of concentration of 

vacancies; V* is the equilibrium distribution of vacancies. Concentrational dependence of dopant diffusion coefficient is 

describes in details in [12]. It should be noted, that using diffusive type of doping did not leads to radiation damage. In this 

situation 1= 2= 0. We determine spatio-temporal distributions of concentrations of point radiation defects by solution the 

following system of equations [10, 13]. 

 

 
 

 
 

 (4) 

 

 
 

 
 

 
 

With boundary 

 

 (x, y, z, 0)=f (x, y, z) (5a) 

 

and initial conditions 

 

, , , 

 

, , . (5b) 

 

Here  =I, V; I (x, y, z, t) are the spatio-temporal distributions of concentrations of interstitials; D(x, y, z, T) is the diffusion 

coefficients of interstitials and vacancies; terms V2(x, y, z, t) and I2(x, y, z, t) correspond to generation of divacancies and 

diinterstitials; kI, V(x, y, z, T), kI, I(x, y, z, T) and kV, V(x, y, z, T) are the parameters of recombination of point defects and 

generation their complexes. 

We determine spatio-temporal distributions of concentration of divacancies V (x, y, z, t) and diinterstitials V (x, y, z, t) by 

solving following systems of equations [10, 13]. 
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With boundary and initial conditions 

 

, , , 

 

, , , 

 

I (x, y, z, 0)=fI (x, y, z), V (x, y, z, 0)=fV (x, y, z). (7) 

 

Here DI(x, y, z, T) and DV(x, y, z, T) are the diffusion coefficients of simplest complexes of radiation defects; kI(x, y, z, T) 

and kV (x, y, z, T) are the parameters of decay of complexes of point defects. 

To determine spatio-temporal distributions of concentrations of point radiation defects we used recently elaborated approach 
[14, D15]. Framework the approach we transform approximations of diffusion coefficients in the following form: D(x, y, z, 

T)=D0 [1+ g(x, y, z, T)], where D0 are the average values of diffusion coefficients, 0< 1, |g(x, y, z, T)|1,  =I, V. We 

also used analogous transformation of approximations of parameters of recombination of point defects and parameters of 

generation of their complexes: kI, V(x, y, z, T)=k0I, V[1+I, V gI, V(x, y, z, T)], kI, I(x, y, z, T)=k0I, I[1+I, I gI, I(x, y, z, T)] and kV, V (x, y, 

z, T) = k0V, V [1+V, V gV, V(x, y, z, T)], where k01, 2 are the their average values, 0I, V < 1, 0I, I < 1, 0V, V< 1, | gI, V(x, y, z, 

T)|1, | gI, I(x, y, z, T)|1, |gV, V(x, y, z, T)|1. Let us introduce the following dimensionless variables: 

,  = x/Lx, , , ,  = y /Ly,  

= z/Lz, . The introduction leads to transformation of Eqs.(4) and conditions (5) to the following form 

 

 
 

 
 

 
 

 (8) 

 

 
 

 
 

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com


International Journal of Electronic Devices and Networking  www.electronicnetjournal.com 

~ 5 ~ 

 
 

 
 

, , , , 

 

, , . (9) 

We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach [14, 15], i.e. as the power series 

 

. (10) 

 

Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for initial-order 

approximations of concentration of point defects  and  and corrections for them  

and , i 1, j 1, k 1. The equations are presented in the Appendix. Solutions of the equations could be obtained 

by standard Fourier approach [16, 17]. The solutions are presented in the Appendix. 

Farther we determine spatio-temporal distributions of concentrations of simplest complexes of point radiation defects. To 

determine the distributions we transform approximations of diffusion coefficients in the following form: D(x, y, z, 

T)=D0[1+ g(x, y, z, T)], where D0 are the average values of diffusion coefficients. In this situation the Eqs.(6) could 

be written as 

 

 
 

 
 

 
 

 
 

 
 

. 

 

Farther we determine solutions of above equations as the following power series 

 

.  (11) 

 

Substitution of the series (11) into Eqs.(6) and appropriate boundary and initial conditions gives us possibility to obtain 

equations for initial-order approximations of concentrations of complexes of defects 0(x, y, z, t) and corrections for them 

i(x, y, z, t), i 1 and boundary and initial conditions for them. The equations and conditions are presented in the Appendix. 

Solutions of the equations have been calculated by standard Fourier approaches [16, 17] and presented in the Appendix. 

We determine spatio-temporal distribution of concentration of dopant by using the same approach, which was used for 

calculation spatio-temporal distribution of concentration of radiation defects. Framework the approach we transform 

approximation of dopant diffusion coefficient to the following form: DL(x, y, z, T)=D0L[1+LgL(x, y, z, T)], where D0L is the 
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average value of dopant diffusion coefficient, 0L< 1, |gL(x, y, z, T)|1. Farther we determine solution of Eq.(1) as the 

following power series 

 

. 

 

Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equations for the initial-order 

approximation of concentration of dopant C00(x, y, z, t) and corrections for them Cij(x, y, z, t) (i 1, j 1), boundary and initial 

conditions for the equations. The equations are presented in the Appendix. Solutions of the equations have been calculated by 

standard Fourier approaches [16, 17]. The solutions are presented in the Appendix. 

Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have been done analytically by 

using the second-order approximations on all parameters, which have been used in appropriate series. Usually the second-

order approximations is enough good approximations to make qualitative analysis and to obtain quantitative results. All results 

of analytical modeling have been checked by comparison with results of numerical simulation. 

 

Discussion 

In this section we analyzed spatio-temporal distributions of concentrations of dopants by using recently calculated relations. 

Figs. 2 shows typical spatial distributions of concentrations of dopants in neighborhood of an interface between materials of 

heterostructures in direction, which is perpendicular to the interface. These distributions have been calculated for the case, 

when value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest areas. 

In this situation one can find increasing of compactness of distribution of concentration of dopant. At the same time one can 

find increasing homogeneity of dopant distribution in the doped part of epitaxial layer. The effect leads to decreasing local 

heating of materials during functioning of transistor or decreasing the dimensions of the transistor for fixed maximal value of 

local overheat. However, applications of this approach of manufacturing of transistor required optimization annealing of 

dopant and/or radiation defects. The main reason for this optimization is following. If the annealing time is small, the dopant 

does not achieves any interfaces between the materials of heterostructure (see Figs. 3). In this situation one cannot find any 

modifications of the distribution of concentration of dopant. If the annealing time is large, the distribution of concentration of 

dopant is too homogenous. We optimize the annealing time based on a recently introduced approach [14, 15, 18-21]. By applying 

this criterion the criterion we approximate real distribution of concentration of dopant by a step-wise function (see Figs. 4). 

Next we determine optimal values of annealing time by minimization of the following mean-squared error. 

 

 
 

Fig 2a: Distributions of concentration of infused dopant in heterostructure from Figs. 1 in direction, which is perpendicular to interface 

between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion 

coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of 

dopant diffusion coefficient in substrate 
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Fig 2b: Distributions of concentration of implanted dopant in heterostructure from Figs. 1 and 2 in direction, which is perpendicular to 

interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time  = 0.0048(Lx
2+Ly

2+Lz
2)/D0. Curves 2 and 4 

corresponds to annealing time  = 0.0057(Lx
2+Ly

2+Lz
2)/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds 

to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion 

coefficient in substrate 
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Fig 3a: Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. 

Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to 

increasing of annealing time 
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Fig 3b: Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2-4 are 

real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time 
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Fig 4a: Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-

squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and  =  = 0 for 

equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal 

annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of dimensionless optimal annealing time on 

value of parameter  for a/L=1/2 and  =  = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter  

for a/L=1/2 and  =  = 0 
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Fig 4b: Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of 

mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and  =  
= 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless 

optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of dimensionless optimal annealing 

time on value of parameter  for a/L=1/2 and  =  = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of 

parameter  for a/L=1/2 and  =  = 0 

 

. (12) 

 

Dependences of optimal values of annealing time are presented on Figs. 4. It is known, that standard step of manufactured ion-

doped structures is annealing of radiation defects. In the ideal case after finishing the annealing dopant achieves interface 

between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicably to anneal the 

dopant additionally. The Fig. 4b shows just the dependences of optimal values of additional annealing time. Necessity to 

anneal radiation defects leads to smaller values of optimal annealing of implanted dopant in comparison with optimal 

annealing time of infused dopant. 

 

Conclusion 

In this paper we consider a possibility to increase density of elements in circuit of a fully differential double tail dynamic 

comparator based on field-effect heterotransistors. Several conditions to increase the density have been formulated. Analysis 

of redistribution of dopant with account redistribution of radiation defects (After implantation of ions of dopant) for 

optimization of the above annealing have been done by using recently introduced analytical approach. The approach gives a 

possibility to analyze mass and heat transports in a heterostructure without crosslinking of solutions on interfaces between 

layers of the heterostructure with account nonlinearity of these transports and variation in time of their parameters. 
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Appendix 

Equations for the functions  and , i 0, j 0, k 0 and conditions for them 

 

 
 

 
 

 
 

; 

 

 
 

 
 

, i 1, 
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, i 1; 
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; 

 

 
 

 
 

 
 

 
 

 
 

; 

 

, , , , ,  

 

 (i 0, j 0, k 0); 

 

,  (i 1, j 1, k 1). 

 

Solutions of these equations with account boundary and initial conditions could be written as 

 

, 

 

Where 

 

,  

 

cn() = cos ( n ), , ; 
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, i 1, 

 

 
 

 
 

 
 

, i 1, 

 

where sn() = sin ( n ); 

 

 
 

; 

 

 
 

 
 

; 

 

 
 

; 

 

 
 

; 
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. 

 

Equations for initial-order approximations of distributions of concentrations of simplest complexes of radiation defects 0(x, 

y, z, t) and corrections for them i(x, y, z, t), i 1 and boundary and initial conditions for them takes the form 

 

 
 

 
 

 
 

; 

 

 
 

 
 

, i1, 

 

 
 

 
 

, i1; 

 

, , , 

 

, , , i0; 

 

0(x,y,z,0)=f (x,y,z), i(x,y,z,0)=0, i1. 

 

Solutions of the above equations could be written as 
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, 

 

Where 

 

,  

 

cn(x) = cos ( n x/Lx), ; 

 

 
 

 
 

 
 

 
 

, i1, 

 

where sn(x) = sin ( n x/Lx). 

Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for them Cij(x,y,z,t) (i 1, j 1) and 

boundary and initial conditions take the form 

 

; 

 

 
 

 
 

, i 1; 
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; 

 

 
 

 
 

 
 

 
 

 
 

; 

 

, , , 

 

, , , i 0, j 0; 

 

C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i 1, j 1. 

 

Solutions of the above equations with account boundary and initial conditions could be written as 

 

, 

 

Where 

,  ; 
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