
~ 52 ~

International Journal of Electronic Devices and Networking 2023; 4(1): 52-57

E-ISSN: 2708-4485

P-ISSN: 2708-4477

IJEDN 2023; 4(1): 52-57

© 2023 IJEDN

www.electronicnetjournal.com

Received: 10-01-2023

Accepted: 13-02-2023

Abhinav Ark

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Aakansha Kumari

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Surabhi Dutta

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Sweta Kumari

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Megha Dadel

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Correspondence Author;

Abhinav Ark

Department of Electronics and

Communication Engineering,

Birla Institute of Technology,

Patna, Bihar, India

Design and simulation of asynchronous FIFO buffer

using globally asynchronous and locally synchronous

methodology

Abhinav Ark, Aakansha Kumari, Surabhi Dutta, Sweta Kumari and

Megha Dadel

Abstract
Combining a faster system with a slower system might be difficult. To solve this issue, FIFO buffers

are used. A FIFO buffer is called the First In, First Out buffer. The initial written data will be read from

this non-random access memory type. Two systems that operate at distinct frequency levels are linked

using a FIFO buffer. The high-frequency component is connected to the low-frequency component

through a FIFO Buffer with a particular operating frequency to prevent data loss during transmission.

This research paper uses globally asynchronous and locally synchronous method to build a FIFO

Buffer and improve performance.

Keywords: First in first out (FIFO), asynchronous, globally asynchronous locally synchronous (GALS),

behavioral modelling, structural modelling

1. Introduction

FIFOs have become integral to digital systems as the design has become more modular. The

design’s power, performance, and cost can be significantly impacted by the type of

structured memory used [1]. Serial and parallel are the two types of architectural schemes and

FIFO designs. The first FIFO generation was the serial FIFO (Such as shift register) that

worked using a fall-through principle (Or pipeline). The parallel type of FIFOs are faster

than serial FIFOs and were the second kind of the FIFOs used [2].

An asynchronous FIFO architecture uses two clock domains that are asynchronous to each

other, wherein one clock domain is utilized to sequentially put data values into a FIFO buffer

and the other clock domain is utilized to sequentially read the data from the same FIFO

buffer. The throughput of the system is a critical productivity parameter.

It gives units of information processed at a given time. The limits of the analog physical

medium being used, the components’ processing capability, and end-user behaviour in a

communication system can all impact throughput [3]. Throughput gauges the efficiency of

hard drives, RAM, networking, and Internet connections. The purpose is to increase the

throughput of the FIFO Queue Buffer and make it more efficient using globally

asynchronous and locally synchronous methodology. A static memory component is utilized

in two-pointer architecture for a FIFO buffer. The memory location and address of the data

word are stored using pointers. This architecture does not perform data word shifting

operations. Instead, read and write pointers are used twice.

2. FIFO Technology

Printed circuit boards (PCBs) that exchange data are present in every digital piece of

equipment. When data reaches the printed circuit boards quickly or in large groups but is

processed slowly or inconsistently, buffering, sometimes called interim storage, is always

necessary. First In, First Out buffer is also known as FIFO. It is a type of non-random access

memory where written data is read out first. Connecting two systems that run at various

frequencies uses a FIFO buffer. A FIFO Buffer with a specific operating frequency connects

the high-frequency and low-frequency components to avoid data loss during transmission. It

can be implemented using the Muller C element or JTL in RFSQ [4].

One way of building FIFO buffers using a fall through principle using shift registers [3].

Control logic, storage, and read and write pointers comprise a hardware FIFO. Storage

options include latches, flip-flops, static random-access memory (SRAM), etc.

www.electronicnetjournal.com

International Journal of Electronic Devices and Networking www.electronicnetjournal.com

~ 53 ~

For larger FIFOs, a dual port SRAM with reading and

writing ports is employed [5]. A binary-coded address (write

address and read address) is used to access the FIFO

memory block. To determine the FIFO state (Full or empty),

gray-coded address is generated from the binary- coded

address and transferred to other clock domain [6]. Multi-bit

signal change problem while latching into synchronizers is

eliminated using gray-coded address transfer [7, 8]. This kind

of architecture does not perform data word-shifting

procedures. Instead, two read/write pointers are employed.

Read pointers contain the memory address from which the

data is read. The reading of the data progresses it. Write

pointers advance and store the memory address where the

data is being written after each writing operation. These

pointers are used to generate status flag signals. Upon reset,

the read and write pointer starts at zero. When a write

pointer passes over a read pointer, the FIFO is said to be

full; when a read pointer catches up to the write pointer, it is

said to be empty [9, 10].

3. Globally Asynchronous Locally Synchronous

With the increase in design complexity and clock frequency

of a digital circuit, using a synchronous clock has increased

the power consumption and area on the chip. Another major

problem that arises from using a synchronous clock is that it

significantly contributes to the noise in analog circuit

components such as phase-locked loops and signal

converters. In place of synchronous blocks, if adequately

designed, asynchronous blocks can be more robust, fast and

power efficient. Asynchronous FIFO operation is based on a

handshaking protocol between the sender (Active) and

receiver (Passive) and is synchronized by request and

acknowledge handshaking signals [11, 12]. Asynchronous

FIFOs can tolerate variation better [13]. But this will add a

large number of control overheads to the system. Thus,

Globally Asynchronous Locally Synchronous methodology

is used to overcome this challenge [14]. The idea behind

GALS is to split a block into smaller sub-blocks. These sub-

blocks are synchronous locally but are connected

asynchronously. So instead of using a fixed period clock as

used in globally synchronous systems, GALS systems have

a locally generated clock whose period is specified for the

local (Synchronous) block [15]. Thus, the block as a whole is

Asynchronous globally. The locally synchronous blocks

communicate using asynchronous handshaking [16, 17]. A

common approach is to add an asynchronous wrapper,

which provides an interface from the synchronous to the

asynchronous environment (and vice versa), to every locally

synchronous block. The asynchronous wrapper also controls

asynchronous communication between locally synchronous

blocks [18, 19, 20]. This methodology helps to increase the

speed and decrease the power consumption, control

overheads, electromagnetic induction, and die area.

4. Methodology

The working of the FIFO buffer is achieved using Verilog

coding, a hardware description language. Verilog coding is

easy to implement, and debugging can be easily done

regardless of design size. The working methodology

consists of four steps- coding, synthesis, implementation,

and simulation.

Fig 1: RTL Schematic of FIFO buffer

The coding portion involves writing the Verilog code

according to the designed FIFO buffer's specifications.

While coding, four types of pointers are mentioned: read

pointer, write pointer, memory array, and status flag

generator. The fig 1, is a general outline of the FIFO buffer

showing the buffer input, clock, read enable , reset , write

enable, buffer full status, buffer empty status, buffer output

and the FIFO counter [21].

Fig 2: An in-depth view of the RTL Schematic of FIFO buffer

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com

International Journal of Electronic Devices and Networking www.electronicnetjournal.com

~ 54 ~

The synthesis process involves the generation of a netlist for

every source file. Further, implementation divides the

section into three parts - translate, map, place, and route.

These three parts involve assembling several files into a

single netlist, mapping I/O blocks, placing the design on the

chip, and connecting the components. The fig 2, shows how

the various components obtained after the synthesis process

are implemented by mapping the design of the circuit and

routing them. The summary of the design and report is

generated after the implementation, followed by simulation.

Errors, if any, are checked and corrected in the code during

the simulation.

Procedural statements are used for behavioral modeling in

the FIFO buffer. It uses a two-pointer method which is the

read-and-write pointer.

Fig 3: RTL Schematic of Write Pointer

For a write operation, the write pointer advances and stores

the memory address where the data has to be written. There

are high chances of overflow when the data is written while

the FIFO is complete. Otherwise, the chances are low.

From fig 3, the RTL Schematic of the Write Pointer is seen.

The write operation is carried out if the FIFO buffer is not

full. Once the buffer becomes full then the read enable is

incremented and the write operation is stopped to prevent

overflow of data. The write pointer always points to the

location from where the write operation has to begin.

Fig 4: RTL Schematic of Read Pointer

The read pointer as shown in Fig 4, has the memory address

from where the data has to be read. Upon reset, both the

read and write pointers remain at zero. There are also high

chances of underflow when data is read from FIFO while it

is empty. Otherwise, the chances are low. The FIFO buffer

also has a counter that increases by one for every write

operation and decreases by one for every read operation.

The status flag generator indicates whether the read or write

operation is being carried out. Fig 5 shows the RTL

Schematic of the Status flag generator. The status flag

becomes active when the buffer is full. This in turn enables

the read to start the reading operation.

Fig 5: RTL Schematic of Status Flag Generator

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com

International Journal of Electronic Devices and Networking www.electronicnetjournal.com

~ 55 ~

Fig 6, gives an idea of the RTL Schematic of the memory

array. The memory array stores the buffer input while the

write operation is performed to prevent data loss. Once the

write operation is done, the data is accessed from the

memory array for a read operation using the read pointer.

Fig 6: RTL Schematic of Memory Array

5. Design Simulation

Waveform, as shown in Fig 7, is obtained after the

Testbench simulation is used to operate the FIFO buffer.

Generally, the empty status flag is set to high whenever the

FIFO buffer is empty and is out of data. Write enable is

turned (logic 1) at the falling edge of the clock pulse. The

value of the counter grows to one as the write pointer

advances. After receiving 15 additional data inputs (buffer

utilizes 16x8 memory array), the FIFO buffer becomes full,

and the counter value reaches its limit making the full status

signal rise to one.

Once the full status signal rises, no additional data can be

written in the buffer to avoid data loss making the read

enable switches too high for reading the data from the

signal's head. When read enable is enabled the data is read

at the FIFO buffer's output port and the counter drops to its

minimum value of zero one by one. The empty flag is again

set to high once all the data is read from the FIFO buffer [22].

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com

International Journal of Electronic Devices and Networking www.electronicnetjournal.com

~ 56 ~

Fig 7: The waveform of testbench simulation

6. Conclusion

In this work, we implemented a FIFO buffer using the

globally asynchronous and locally synchronous

methodology for high throughput. The status flag generator,

a memory component, a write pointer, a read pointer, and

both the read and write enable. The read-and-write pointer

indicates the memory location where data is being read or

written. The FIFO counter's value goes up by one for every

write action, and for every read operation, it goes down by

one. When the read-and-write operation co-occurs, the value

of the FIFO counter does not change. The queue's status

signal lets you know if it's full or empty. This FIFO

architecture can be used in a system operating on a high

clock frequency to reduce power consumption and noise.

7. References

1. HoSuk Han Kenneth S. Stevens, Clocked and

Asynchronous FIFO Characterization and Comparison,

Electrical and the Computer Engineering University of

Utah

2. Masoud Oveis-Gharana, Gul N Khan. Statically

adaptive multi FIFO buffer architecture for network on

chip, Electrical and Computer Engineering, Ryerson

University, 350 Victoria St, Toronto, ON M5B 2K3,

Canada, February; c2015.

3. Pragya Dour, Chhaya Kinkar, Throughput

Improvement in Asynchronous FIFO Queue in Wired

and Wireless Communication, Sagar Institute of

Research Technology and Science RGPV University,

Bhopal, India, 2016, 5(12). ISSN: 2278-0181

IJERTV5IS120136.

4. Herr QP, Bunyk P. Implementation and application of

first-in-first-out buffers, TRW Space and Electronics

Group, Redondo Beach, CA, USA, IEEE Transactions

on Applied Superconductivity, 2003, 13(2).

5. Abdel-Hafeez S, Shatnawi M, Gordon-Ross A. A

double data rate 8t-cell sram architecture for systems

On-chip, IEEE 14th International Symposium on

System-on-Chip; c2012.

6. Rahmani A, Liljeberg P, Plosila J, Tenhunen H. Design

and implementation of reconfigurable FIFOs for

Voltage/Frequency Island-based Networks-on-Chip.

Microprocessors and Microsystems. 2013;37:432-445.

7. Hyoung-Kook Kim, Laung-Terng Wang, Yu-Liang

Wu, Wen-Ben Jone. Testing of Synchronizers in

Asynchronous FIFO

8. Gordon-Ross A, Abdel-hafeez S, Alsafrjalni MH. A

one-cycle FIFO buffer for memory management units

in Manycore System. IEEE Computer Society Annual

Symposium on VLSI; c2019.

9. Fattah M, Manian A, Rahimi A, Mohammadi S. A High

Throughput Low Power FIFO used for GALS NoC

Buffers, IEEE Computer Society Annual Symposium

on VLSI; c2010.

10. Chelcea T, Nowick SM. A low-latency FIFO for

mixed-clock systems, Proceedings IEEE Computer

Society Workshop on VLSI 2000. System Design for a

System-on-Chip Era, Orlando, FL, USA; c2000. p. 119-

126.

11. Saleh Abdel-Hafeez, Ann Gordon-Ross.

Reconfigurable FIFO memory circuit for synchronous

and asynchronous communication, Department of

Computer Engineering, Jordan University of Science

and Technology, Irbid, Jordan 2 Sabbatical at

Department of Computer Engineering, College of

Computer, Qassim University, Qassim, Buraydah,

Saudi Arabia 3 Department of Electrical and Computer

Engineering, University of Florida (UF), Gainesville,

Florida, USA; c2020.

12. Abdel-Hafeez S, Quwaider MQ. A one-cycle

asynchronous FIFO queue buffer circuit. 11th

International Conference on Information and

Communication Systems (ICICS), Irbid, Jordan; c2020.

13. Taghi Adl SM, Mohammadi S. A high-performance

dual clock elastic FIFO network Interface for GALS

NoC. Microelectron J, Elsevier; c2018.

14. Keller B, Fojtik M, Khailany B. A Plausible

Bisynchronous FIFO for GLAS systems. 21st IEEE

International Symposium on Asynchronous Circuits

and Systems, California; c2015. p. 1-8.

15. Dasgupta S, Yakovlev A. Comparative analysis of

GALS clocking schemes, IET Comput. Digit. Techn.

2007;1(2):59-69.

16. Bormann DS, Cheung PYK. Asynchronous wrapper for

heterogeneous systems, Proceedings International

Conference on Computer Design VLSI in Computers

and Processors, Austin, TX, USA; c1997. p. 307-314.

17. Mansi Jhamb RK, Sharma, Gupta AK. A Novel FIFO

Design for Data Transfer in Mixed Timing Systems,

Proceedings of International Journal of Electronics and

Communication Engineering, 2014, 8(3).

18. Krstic M, Grass E, Gürkaynak FK, Vivet P. Globally

Asynchronous, Locally Synchronous Circuits:

Overview and Outlook. IEEE Design & Test of

Computers. 2007;24(5):430-441.

19. Saleh Abdel-Hafeez1, A One-Cycle Asynchronous

FIFO Queue Buffer Circuit, Muhannad Q. Quwaider2 1

Jordan University of Science and Technology; c2020.

20. Sheibanyrad A, Greiner A. Two efficient synchronous

asynchronous converters well-suited for networks-on-

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com

International Journal of Electronic Devices and Networking www.electronicnetjournal.com

~ 57 ~

chip in GALS architectures, Integration. 2008;41(1):17-

26,

21. HoSuk Han, Kenneth S Stevens. Clocked and

Asynchronous FIFO Characterization and Comparison,

Electrical and Computer Engineering, University of

Utah, United States; c2009.

22. Panades M, Greiner A. Bi-Synchronous FIFO for

Synchronous Circuit Well Suited for Network-on-Chip

in GALS architectures, Proceedings of the First

International Symposium on Networks-on-Chip

(NOCS'07); c2007.

file://server/test/Electronics%20Engineering/Devices%20and%20Systems/issue/1%20Vol/1%20issue/www.electronicnetjournal.com

